Externally controlled spin state switching in metal-organic complexes. ALEXEI BAGRETS, VELIMIR MEDED, MARIO RUBEN, FERDINAND EVERS, Institute of Nanotechnology, Research Center Karlsruhe, Germany — Recent transport experiments have demonstrated that a manipulation of the charge of individual molecules is feasible using electromigrated metal junctions [1] or electrochemical gates in conjunction with the STM [2]. Using elaborated density functional theory calculations, we will discuss a possibility to induce – by means of charging or applied stress – a switching between low and high spin states in certain metal-organic systems, [Fe(bpp)$_2$]$^{2+}$ (bpp: bispyrazolyl pyridine) and [Mn(tpy)$_2$]$^{2+}$ (tpy: terpyridine). Based upon a recent success of the single molecular conduction experiment through Ru(II) complex [3], we anticipate the transport properties of Fe(II) and Mn(II) complexes to be gate controlled via exploiting their spin degree of freedom.

Alexei Bagrets
Institute of Nanotechnology, Research Center Karlsruhe, Germany

Date submitted: 21 Nov 2008