Berry’s Phase of a Current-Biased Josephson Junction

ANTHONY TYLER, DrexelUniversity, ROBERTO RAMOS, ZECHARIAH THRAILKILL, SAM KENNERLY, Drexel University — A quantum system, prepared in an eigenstate, can accumulate a geometric phase known as Berry’s phase in addition to the expected dynamic phase. This occurs when there are adiabatic changes to the Hamiltonian which trace a closed loop in parameter space. A common example of this phase is an electron in a slowly varying magnetic field which traces a closed path. From this adiabatic variation, the electron’s spin state has acquired a Berry’s phase in addition to the dynamic phase. Due to the similarities between spin-1/2 particles, such as the electron, and solid state quantum bits (qubits), there should be an analogous process by which these system can gain a Berry’s phase. Such processes have been tested in the charge qubit and has been derived for the flux qubit. Here, we will derive the Berry’s phase for a phase qubit which can be found experimentally using quantum state tomography. We then utilize this to explore the possibility of creating topological gates with phase qubits.

1Please address all correspondences to rcr32@drexel.edu

Anthony Tyler
DrexelUniversity

Date submitted: 25 Nov 2008

Electronic form version 1.4