Abstract Submitted for the MAR09 Meeting of The American Physical Society

Novel phase line in the mixed state of the multi-band MgB₂ single crystal¹ DAICHI KUBOTA, TAKEKAZU ISHIDA, Osaka Pref. Univ. (Sakai) — High-quality MgB₂ single crystals of submillimeter size were synthesized successfully by the vapor transport method for carrying out magnetic torque measurements. The magnetic torque of MgB₂ has been analyzed by a single-band model as well as a multi-band model for an anisotropic superconductor. The anisotropy in the coherence length $\gamma_{\xi} = \xi_a/\xi_c$ and the anisotropy in the penetration depth $\gamma_{\lambda} = \lambda_c/\lambda_a$ with the multi-band Kogan theory for the magnetic torque were simultaneously determined by means of the least-squares fittings. A systematic variation of two-sorts of effective superconducting anisotropies, γ_{ξ} and γ_{λ} , in the field-temperature plane was obtained as contours, and can be interpreted as a manifestation of the two-band nature of the MgB₂ superconductivity. It is not a gradual crossover but a drastic change in the electronic state that an MgB₂ superconductor transits from a $\pi - \sigma$ multiband superconductor in lower fields to a σ single band superconductor in higher fields.

¹This work was partly supported by a Gant-in-Aid for Scientific Research from the MEXT (Grant No. 19206104) and a special grant from Osaka Prefecture University.

Daichi Kubota Osaka Pref. Univ. (Sakai)

Date submitted: 21 Nov 2008

Electronic form version 1.4