Layer-by-layer growth by pulsed laser deposition in the unit-cell limit.1 M. KAREEV, University of Arkansas, S. PROSANDEEV, J. LIU, P. RYAN, J.W. FREELAND, J. CHAKHALIAN — Unlike conventional growth of complex oxide heterostructures, the ultimate unit cell limit imposes strict constrains for a multitude of parameters critical to layer-by-layer growth. Here we report on detailed analysis of far-from-equilibrium growth by interrupted pulsed laser deposition with application to RENiO\textsubscript{3}/LaAlO\textsubscript{3} superlattices grown on a diverse set of substrates SrTiO\textsubscript{3}, NdGaO\textsubscript{3}, LSAT and LaAlO\textsubscript{3}. A combination of in-situ high-pressure RHEED and AFM along with extensive data obtained from synchrotron based XRD and resonant XAS allows us critically assess the meaning of RHEED intensity oscillation and the effect of a polar/non-polar interface on the heteroepitaxial growth. The role of defects formed during the initial stages of growth is also addressed.

1Work at the Advanced Photon Source, Argonne is supported by the U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357. J.C. was supported by DOD-ARO under the Contract No. 0402-17291 and NSF Contract No. DMR-0747808.

M. Kareev
University of Arkansas

Date submitted: 21 Nov 2008