Abstract Submitted for the MAR09 Meeting of The American Physical Society

 Cu_2S-CdS of Morphology and Ag_2S -CdS Nanorod Heterostructures¹ DENIS DEMCHENKO, Virginia Commonwealth University, BRYCE SADTLER, University of California, Berkeley, HAIMEI ZHENG, A. PAUL ALIVISATOS, LIN-WANG WANG, Lawrence Berkeley National Laboratory — A partial cation exchange has been used to synthesize Cu_2S -CdS and Ag₂S-CdS nanocrystal heterostructures, with two very different morphologies. Cu⁺ cation exchange takes place preferentially at the ends of CdS nanorods, Cu₂S segments grow into the nanorod from both ends. Ag^+ exchange is non-selective, Ag_2S islands nucleate and grow over the entire surface of the nanorod. This leads to very different patterns, striped Ag₂S-CdS superlattice with several equidistant Ag₂S segments in a CdS nanorod, and an asymmetric Cu₂S-Cds heterostructure with Cu₂S segments at the ends of the CdS nanorod. We use first-principles calculations to obtain formation energies of the different epitaxial interfaces between $Cu(Ag)_2S$ and different facets of CdS nanorods. Comparison of chemical and elastic contributions to the interface formation energy for the $Cu(Ag)_2S$ -CdS shows that the relative stability of the interfaces determines the nucleation of $Cu(Ag)_2S$ and the resulting morphology. Furthermore, since two end facets of CdS nanorod are not crystallographically equivalent a controlled asymmetric nucleation of Cu₂S can occur.

¹Supported by U.S. DOE, DE-AC02-05CH11231 and NERSC.

Denis Demchenko Virginia Commonwealth University

Date submitted: 21 Nov 2008

Electronic form version 1.4