Abstract for an Invited Paper for the MAR09 Meeting of The American Physical Society

New techniques for fluorescence background rejection in microscopy and endoscopy

CATHIE VENTALON, Laboratory of Neurophysiology and New Microscopies, CNRS UMR 8154, INSERM S603, University Paris Descartes - 45 rue des Saints Pères - 75006 Paris

Confocal microscopy is a popular technique in the bioimaging community, mainly because it provides optical sectioning. However, its standard implementation requires 3-dimensional scanning of focused illumination throughout the sample. Efficient non-scanning alternatives have been implemented, among which the simple and well-established incoherent structured illumination microscopy (SIM) [1]. We recently proposed a similar technique, called Dynamic Speckle Illumination (DSI) microscopy, wherein the incoherent grid illumination pattern is replaced with a coherent speckle illumination pattern from a laser, taking advantage of the fact that speckle contrast is highly maintained in a scattering media, making the technique well adapted to tissue imaging [2]. DSI microscopy relies on the illumination of a sample with a sequence of dynamic speckle patterns and an image processing algorithm based only on an a priori knowledge of speckle statistics. The choice of this post-processing algorithm is crucial to obtain a good sectioning strength: in particular, we developed a novel post-processing algorithm based one wavelet pre-filtering of the raw images and obtained near-confocal fluorescence sectioning in a mouse brain labeled with GFP, with a good image quality maintained throughout a depth of ~100 μ m [3]. In the purpose of imaging fluorescent tissue at higher depth, we recently applied structured illumination to endoscopy. We used a similar set-up wherein the illumination pattern (a one-dimensional grid) is transported to the sample with an imaging fiber bundle with miniaturized objective and the fluorescence image is collected through the same bundle. Using a post-processing algorithm similar to the one previously described [3], we obtained high-quality images of a fluorescein-labeled rat colonic mucosa [4], establishing the potential of our endomicroscope for bioimaging applications.

Ref:

[1] M. A. A. Neil et al, Opt. Lett. 22, 1905 (1997)

- [2] C. Ventalon et al, Opt. Lett. 30, 3350 (2005)
- [3] C. Ventalon *et al*, Opt. Lett. **32**, 1417 (2007)
- [4] N. Bozinovic et al, Opt. Express 16, 8016 (2008)