Abstract Submitted for the MAR09 Meeting of The American Physical Society

Electronic anisotropy from magneto-transport near T_c in $SmFeAs(O_{0.7}F_{0.25})$ and $(Ba,Rb)Fe_2As_2$ single crystals PHILIP MOLL, Laboratory for Solid State Physics, ETH Zurich, Switzerland, KARSTEN KUNZE, Electron Microscopy ETH Zurich, Switzerland, ZBIGNIEW BUKOWSKI, NIKO-LAI ZHIGADLO, JANUSZ KARPINSKI, High Pressure Materials Synthesis, ETH Zurich, Switzerland, BERTRAM BATLOGG, Laboratory for Solid State Physics, ETH Zurich, Switzerland — We derived thermally activated flux flow (TAFF) activation energies $E_a(H)$ and the upper critical fields $Hc_2(T)$ parallel to the c-axis and in the Lorentz-force free configuration (**H** || \mathbf{ab} || \mathbf{j}) of SmFeAs(O_{0.7}F_{0.25}) and (Ba,Rb)Fe₂As₂ single crystals from resistance measurements and compare them to the ones reported for other REFeAs(OF). A perfectly rectangular rod (67x11x4 μ m), aligned with the crystal axes, was cut from a larger SmFeAs(O_{0.7}F_{0.25}) single crystal (~ 200 μ m) by a Focused Ion Beam (FIB) which allowed us to precisely control its geometry factor $L/A = 0.89 \ 1/\mu m$. The FIB was also used to deposit 4 Pt contacts. We found a slope of $\mathbf{H}_{c2.50\%}$ (T), parallel to the c-axis, of 1.9 T/K for SmFeAs($O_{0.7}F_{0.25}$) and 3.7 T/K for (Ba,Rb)Fe₂As₂ near T_c. The electronic anisotropy, derived from magneto-transport, is significantly larger in the REFeAs(OF) crystals than in $(Ba,Rb)Fe_2As_2$.

> Philip Moll Laboratory for Solid State Physics, ETH Zurich, Switzerland

Date submitted: 21 Nov 2008

Electronic form version 1.4