Electronic anisotropy from magneto-transport near T_c in SmFeAs(O$_{0.7}$F$_{0.25}$) and (Ba,Rb)Fe$_2$As$_2$ single crystals

PHILIP MOLL, Laboratory for Solid State Physics, ETH Zurich, Switzerland, KARSTEN KUNZE, Electron Microscopy ETH Zurich, Switzerland, ZBIGNIEW BUKOWSKI, NIKOLAI ZHIGADLO, JANUSZ KARPINSKI, High Pressure Materials Synthesis, ETH Zurich, Switzerland, BERTRAM BATLOGG, Laboratory for Solid State Physics, ETH Zurich, Switzerland — We derived thermally activated flux flow (TAFF) activation energies $E_a(H)$ and the upper critical fields $H_{c2}(T)$ parallel to the c-axis and in the Lorentz-force free configuration ($H \parallel ab \parallel j$) of SmFeAs(O$_{0.7}F_{0.25}$) and (Ba,Rb)Fe$_2As_2$ single crystals from resistance measurements and compare them to the ones reported for other REFeAs(OF). A perfectly rectangular rod (67x11x4 µm), aligned with the crystal axes, was cut from a larger SmFeAs(O$_{0.7}$F$_{0.25}$) single crystal (\sim 200 µm) by a Focused Ion Beam (FIB) which allowed us to precisely control its geometry factor $L/A = 0.89$ 1/µm. The FIB was also used to deposit 4 Pt contacts. We found a slope of $H_{c2,50\%}(T)$, parallel to the c-axis, of 1.9 T/K for SmFeAs(O$_{0.7}$F$_{0.25}$) and 3.7 T/K for (Ba,Rb)Fe$_2$As$_2$ near T_c. The electronic anisotropy, derived from magneto-transport, is significantly larger in the REFeAs(OF) crystals than in (Ba,Rb)Fe$_2$As$_2$.

Philip Moll
Laboratory for Solid State Physics, ETH Zurich, Switzerland

Date submitted: 21 Nov 2008