Zero-bias conductance anomaly in point-contact junctions on graphite

WAN KYU PARK, CESAR CHIALVO, RICH JONES, SAM JOHNSON, NADYA MASON, LAURA GREENE, University of Illinois at Urbana-Champaign — The electronic properties of graphene, a two-dimensional carbon allotrope, continue to attract great interest because of the interesting underlying physics and application potential of this novel electronic material. An ideal single-layer graphene is known to show a linear behavior in the electronic density of states (DOS) around the Fermi level. The ability to engineer the DOS of single- and multi-layer graphene is considered as a fundamental requirement for the realization of electronic devices. To investigate the electronic DOS in graphene/graphite, we adopt a spectroscopic technique based on nanoscale point-contact junctions, where differential conductance spectra are taken at around the liquid helium temperature. A common feature observed in all junctions on both Kish graphite and HOPG is an anomalous conductance dip at zero bias. The conductance curves show a logarithmic bias dependence in their slopes, exhibiting a systematic evolution as a function of magnetic field and contact pressure. We discuss possible origins of these behaviors including the possibility of modification in the electronic DOS of graphite.

1Work supported by the U.S. DOE under Award No. DE-FG02-07ER46453.