Transport in a Dissipative Luttinger Liquid

ZORAN RISTIVOJEVIC, Institute of Theoretical Physics, University of Cologne, Cologne, Germany,
THOMAS NATTERMANN, Institute of Theoretical Physics, University of Cologne, Cologne, Germany —
We study theoretically the transport through a single impurity in a one-channel Luttinger liquid coupled to a dissipative Ohmic bath. For nonzero dissipation, the single impurity is always a relevant perturbation which suppresses transport strongly. At zero temperature, the current voltage relation of the link is
\[I \sim \exp\left(-\frac{E_0}{eV}\right), \]
where \(E_0 \sim \frac{\eta}{\kappa} \) and \(\kappa \) denotes the compressibility and \(\eta \) the dissipation strength. At nonzero temperature \(T \), the linear conductance is proportional to \(\exp\left(-\sqrt{C E_0/k_B T}\right) \). The decay of Friedel oscillation saturates for at distances larger than \(L_\eta \sim \frac{1}{\eta} \) from the impurity.