Designing Superconductors with Periodic Table-based Maps and Material Databases

O. PAUL ISIKAKU-IRONKWE, The Center for Superconductivity Technologies, Abuja FCT, ALEX ANIMALU, Department of Physics and Astronomy, University of Nigeria, Nsukka — One of the grand challenges of superconductivity science is achieving a paradigm shift from discovery by serendipity to discovery by design. Empirical and heuristic rules have been a useful bridge in this desired direction. Many early superconductors were discovered by this method and by serendipity. DFT-based ab initio methods have often ignored empirical and experimental data. Here we propose that by using Periodic Table-based maps such as electronegativity spectrum maps, valence electron spectrum maps and atomic number spectrum maps for binary systems, A_xB_y, combined with data-mining of experimental material databases we can “reverse-engineer” many known superconductors. We demonstrate the power of this technique by predicting new and novel superconductors without recourse to DFT calculations.

1Research support from Dr. Michael Schaffer, General Atomic, San Diego, CA.