Interface and bulk controlled charge transport in Pd/CuPc/Pd sandwich devices

CORNELIU COLESNIUC, IVAN SCHULLER, University of California San Diego, La Jolla, Ca 92093

We present transport measurements in thin film devices of copper phthalocyanine sandwiched between palladium electrodes. The devices were grown in-situ using molecular beam deposition of phthalocyanine films with the thickness ranging between 30 and 600 nanometers. The I-V characteristics as a function of temperature and thickness exhibit two distinct regions - a low voltage Ohmic region with current proportional to the voltage and a high voltage region with a power law dependence. At low voltages the current shows an inverse power dependence on thickness, I ∝ thickness $^{-n}$, with the exponent $n > 2$, suggesting that both the interfaces and the film control the transport mechanism. The temperature dependence of the current does not show a clear activated behavior, supporting the same conclusion. On the other hand, at high voltages the power-law exponent of the I-V decreases at lower thickness for constant temperature implying also that both the interfaces and the film may control the transport. Work supported by AFOSR.

Corneliu Colesniuc
University of California San Diego, La Jolla, Ca 92093

Date submitted: 21 Nov 2008

Electronic form version 1.4