Abstract Submitted
for the MAR09 Meeting of
The American Physical Society

Magnetic and structural properties of half-metallic \(\text{Sr}_2\text{FeMoO}_6 \) epitaxial films fabricated by ultra-high vacuum sputtering

ADAM HAUSER, R.A. RICCIARDO, A. GENC, R.E. WILLIAMS, P.M. WOODWARD, H.L. FRASER, F.Y. YANG, The Ohio State University — \(\text{Sr}_2\text{FeMoO}_6 \), a double-perovskite half-metallic ferromagnet, has attracted much attention because of its high \(T_c \) of 420 K. However, the fabrication of \(\text{Sr}_2\text{FeMoO}_6 \) epitaxial films has been challenging due to impurity phases and disorder. Using ultrahigh vacuum off-axis RF sputtering with precisely controlled low-concentration \(\text{H}_2 \) in \(\text{Ar} \), we have fabricated phase-pure \(\text{Sr}_2\text{FeMoO}_6 \) epitaxial films on \(\text{SrTiO}_3 \) (001) and (111) substrates. X-ray diffraction confirms pure phase with double perovskite ordering. The phase purity and magnetic moments are highly sensitive to the \(\text{H}_2 \) partial pressure. The optimal range for the \(\text{H}_2 \) concentration is 0.4% to 0.6% in \(\text{Ar} \) with 70 mTorr total pressure. The saturation magnetization of the \(\text{Sr}_2\text{FeMoO}_6 \) films grown in this range is 1.5 \(\mu_B \) per formula unit at 5 K, which is a strong magnetization considering the epitaxial strain. Aberration-corrected HAADF TEM images reveal atomically sharp interface between \(\text{Sr}_2\text{FeMoO}_6 \) and \(\text{SrTiO}_3 \).

\(^1\)Funding for this research was provided by the Center for Emergent Materials at the Ohio State University, a NSF MRSEC (Award Number DMR-0820414).

Adam Hauser
The Ohio State University

Date submitted: 26 Nov 2008

Electronic form version 1.4