Abstract Submitted for the MAR09 Meeting of The American Physical Society

Enhanced H₂ adsorption in metal-organic frameworks with open metal sites: Binding mechanism and strong dependence on metal ions¹ WEI ZHOU, HUI WU, NIST and Univ. of Maryland, TANER YILDIRIM, NIST and University of Pennsylvania — Metal-organic frameworks (MOFs) with open metal sites exhibit much stronger H₂ binding strength than classical MOFs, due to the direct interaction between H_2 and the coordinately unsaturated metal ions. [1] Here we will present a systematic study of the H_2 adsorption on a series of isostructural MOFs, $M_2(dhtp)$ with open metals M = Mg, Mn, Co, Ni, Zn. The experimental, initial isosteric heats of adsorption for $H_2(Q_{st})$ of these MOFs range from 8.5 to 12.9 KJ/mol, with increasing Q_{st} in the following order: Zn, Mn, Mg, Co, and Ni.[2] The H_2 binding energies derived from first-principles calculation follow the same trend as the experimental observation on Q_{st} , confirming the electrostatic Coulomb attraction between the H₂ and the open metals being the major interaction. We also found a strong correlation between the metal ion radius, the M-H₂ distance and the H_2 binding strength, which provides a viable, empirical method to predict the relative H_2 binding strength of different open metals. [1] J. Phys. Chem. C, 112, 8132 (2008). [2] J. Am. Chem. Soc., 130, 15268 (2008).

¹Partially supported by DOE BES DE-FG02-08ER46522 (TY).

Taner Yildirim NIST and University of Pennsylvania

Date submitted: 26 Nov 2008

Electronic form version 1.4