Abstract Submitted for the MAR09 Meeting of The American Physical Society

Photo-Induced Structural Dynamics of Graphite Studied by Ultrafast Electron Crystallography.¹ RAMANI K. RAMAN, RYAN A. MUR-DICK, YOSHIE MUROOKA, CHONG-YU RUAN, Michigan State University — The graphite to diamond conversion is believed to involve the rhombohedral phase of graphite as an intermediate state. Using ultrafast electron crystallography, we have observed the formation of transient interlayer sp^3 bonds in graphite beyond a threshold fluence, leading to a non-thermal structural change (Raman, R. K. et al. Phys. Rev. Lett. 101, 077401 (2008)). This transient rebonding towards diamondization is likely driven by a compressive Coulomb stress created by the photoinduced charge separation following the initial E_{2g} phonon excitation that alters the layering symmetry within graphite.

¹Department of Energy (Grant No. DE-FG02-06ER46309)

Ramani K. Raman Michigan State University

Date submitted: 21 Nov 2008

Electronic form version 1.4