Abstract Submitted for the MAR09 Meeting of The American Physical Society

Simulation of Fe_n-doped C₆₀ Monolayer on h-BN/Ni (111)¹ LAN LI, HAI-PING CHENG, Quantum Theory Project and Department of Physics, University of Florida — We have performed first-principles calculations based on density functional theory to investigate the structure, electronic structure and magnetic properties of Fe_n -C₆₀ complexes. Interfaces that consist of a C₆₀ monolayer, a supporting h-BN/Ni (111) layers, and the transition metal Fe_n (n = 1.4 & 15) have been thoroughly characterized. Electron transfer has been observed from the Fe ions to the C_{60} molecules, which leads to the domination of ionic character on the Fe-C₆₀ bonding. Furthermore, the Fe_n-doped C_{60} systems show strong hybridizations between s-, d- orbitals of Fe atoms and p-orbital (π -like) of C atoms. The spin of the net transferred electrons from Fe_n to C_{60} is spin minority, which leads to a magnetic moment in C_{60} opposite to the total magnetic moment of the system. All of the electronic structure calculations have been performed in generalized gradient approximation (GGA) and local density approximation (LDA). In Fe_4C_{60} and Fe₁₅C₆₀ systems, we have also performed GGA+U and LDA+U calculations for comparison.

¹This work is supported by the U.S. Department of Energy.

Lan Li

Date submitted: 26 Nov 2008

Electronic form version 1.4