Flux-quantization effect in superconducting niobium loops

—
Superconducting loops have periodical oscillation of critical temperature T_c as a function of applied perpendicular magnetic field H. The corresponding periodicity is related to superconducting flux quantization, $h/2e$, due to size constraint. When the loop size shrinks, however, new phenomena can appear. For example, the oscillation can show a h/e rather than $h/2e$ periodicity if the hole diameter is comparable to the superconducting coherence length. We present experimental investigation of flux-quantization effect in mesoscopic superconducting niobium loops. We developed a new approach to fabricate high quality loops by combining electron-beam lithography with focused-ion-beam (FIB) milling techniques. Periodic oscillations were observed in both the $H – T$ phase diagram and the magnetoresistance. Analysis of the data with various theories will be presented.

1This material is based upon work supported by NSF Grant No. DMR-0605748 and the US Department of Energy, under contract DE-AC02-06CH11357, Award DE-FG02-06ER46334.