Faceting of Ru(1120) Surface: A Model System for Catalysis

QUANTONG SHEN, WENHUA CHEN, HAO WANG, ROBERT BARTYNSKI, Rutgers University, PROFESSOR ROBERT A. BARTYNSKI TEAM — We have studied NO$_2$-induced faceting of a Ru(1120) surface by means of low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy (AES). By annealing the sample at > 600 K in NO$_2$ (10^{-6} Torr), the surface becomes fully faceted as revealed by LEED although it is rather smooth, with only two layers exposed. The faceted surface remains the same at NO$_2$ exposure ranging from 20 L to 12000 L and is stable for substrate temperature $T < 850$ K. The STM results confirmed the LEED observations and showed that the faceted surface consists of sawtooth ridges along the [0001] direction with typical dimensions of \sim5 nm in width and > 100 nm in length. We have found that the faceted O/Ru surface is very active for NH$_3$ decomposition to produce H$_2$ with high selectivity to N$_2$ at room temperature.

1This work is supported by the U. S. Department of Energy, Office of Basic Energy Sciences
2postdoc
3Research associate
4PhD student
5Professor

Quantong Shen
Rutgers University

Date submitted: 21 Nov 2008