Abstract Submitted for the MAR09 Meeting of The American Physical Society

Faceting of Ru(1120) Surface: A Model System for Catalysis¹ QUANTONG $SHEN^2$, CHEN³, HAO WANG⁴, ROBERT BARTYNSKI⁵, Rutgers University, PROFES-SOR ROBERT A. BARTYNSKI TEAM — We have studied NO₂-induced faceting of a Ru(1120) surface by means of low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and Auger electron spectroscopy (AES). By annealing the sample at > 600 K in NO₂ (10^{-8} Torr), the surface becomes fully faceted as revealed by LEED although it is rather smooth, with only two layers exposed. The faceted surface remains the same at NO₂ exposure ranging from 20 L to 12000 L and is stable for substrate temperature T< 850 K.The STM results confirmed the LEED observations and showed that the faceted surface consists of sawtooth ridges along the [0001] direction with typical dimensions of ~ 5 nm in width and >100nm in length. We have found that the faceted O/Ru surface is very active for NH₃ decomposition to produce H₂ with high selectivity to N₂ at room temperature.

Quantong Shen Rutgers University

Date submitted: 21 Nov 2008 Electronic form version 1.4

¹This work is supported by the U. S. Department of Energy, Office of Basic Energy Sciences

²postdoc

³Research associate

⁴PhD student

⁵Professor