Abstract Submitted for the MAR09 Meeting of The American Physical Society

X-ray resonant magnetic scattering study of multiferroic RMnO₃(R = Dy, Ho, Er) compounds A.I. GOLDMAN¹, S. NANDI¹, A. KREYSSIG¹, L. TAN¹, J.W. KIM¹, J.Q. YAN¹, M.D. VANNETTE¹, J.C. LANG³, D. HASKEL³, T.A. LOGRASSO², R.J. MCQUEENEY¹, ¹ Dept. of Physics and Astronomy, Iowa State University, Ames; ²Ames Laboratory US DOE, Ames ³Advanced Photon Souce, Argonne — Element specific x-ray resonant magnetic scattering (XRMS) investigations were undertaken to determine the magnetic structure of multiferroic hexagonal RMnO₃ compounds. In the intermediate temperature phase (ITP) (8-68 K for the Dy^{3+} and 4.5-40 K for Ho^{3+}) the moments are aligned and antiferromagnetically correlated in the \mathbf{c} direction according to the same magnetic representation Γ_3 . Below the ITP, the Dy^{3+}/Ho^{3+} moments order differently and according to the magnetic representations Γ_2/Γ_1 . The temperature dependence of the observed intensity in the ITP can be modeled assuming the splitting of groundstate doublet/quasi-doublet crystal-field levels of Dy^{3+}/Ho^{3+} by the exchange field of Mn^{3+} . No resonant signals could be found for Er^{3+} from 2-80 K. Specific magnetic representations can be excluded for the magnetic order of Er^{3+} moments but can not be uniquely determined within the sensitivity of XRMS. – The support by U.S. DOE (DE-AC02-07CH11358 and DE-AC02-06 CH11357) is acknowledged.

S. Nandi¹

Date submitted: 02 Dec 2008

Electronic form version 1.4