X-ray resonant magnetic scattering study of multiferroic RMnO$_3$($R =$ Dy, Ho, Er) compounds
A.I. GOLDMAN1, S. NANDI1, A. KREYSSIG1, L. TAN1, J.W. KIM1, J.Q. YAN1, M.D. VANNETTE1, J.C. LANG3, D. HASKEL3, T.A. LOGRASSO2, R.J. MCQUEENEY1, 1 Dept. of Physics and Astronomy, Iowa State University, Ames; 2Ames Laboratory US DOE, Ames; 3Advanced Photon Source, Argonne — Element specific x-ray resonant magnetic scattering (XRMS) investigations were undertaken to determine the magnetic structure of multiferroic hexagonal RMnO$_3$ compounds. In the intermediate temperature phase (ITP) (8-68 K for the Dy$^{3+}$ and 4.5-40 K for Ho$^{3+}$) the moments are aligned and antiferromagnetically correlated in the c direction according to the same magnetic representation Γ_3. Below the ITP, the Dy$^{3+}$/Ho$^{3+}$ moments order differently and according to the magnetic representations Γ_2/Γ_1. The temperature dependence of the observed intensity in the ITP can be modeled assuming the splitting of ground-state doublet/quasi-doublet crystal-field levels of Dy$^{3+}$/Ho$^{3+}$ by the exchange field of Mn$^{3+}$. No resonant signals could be found for Er$^{3+}$ from 2-80 K. Specific magnetic representations can be excluded for the magnetic order of Er$^{3+}$ moments but can not be uniquely determined within the sensitivity of XRMS. — The support by U.S. DOE (DE-AC02-07CH11358 and DE-AC02-06 CH11357) is acknowledged.

S. Nandi1

Date submitted: 02 Dec 2008 Electrical form version 1.4