Microrheology of protein layers at the air-water interface

MYUNG HAN LEE, STEVEN CARDINALI, DANIEL REICH, Johns Hopkins University, KATHLEEN STEBE, University of Pennsylvania, ROBERT LEHENY, Johns Hopkins University — Due to their amphiphilic nature, many proteins in aqueous solution will adsorb at the air-water interface to create a viscoelastic interfacial layer. We present an investigation of the formation and mechanical properties of interfacial protein layers formed by beta-lactoglobulin using microrheological techniques including multiple particle tracking and magnetic nanowire microrheology. We observe the interfacial rheology evolve in time through three stages: (i) an increase in viscosity, (ii) a period of spatial heterogeneity in which the interface contains elastic and viscous regions, and (iii) the development of a uniformly rigid elastic film. We evaluate the dependence of this evolution on the protein-protein interactions, which we tune by varying solution pH. As we will discuss, these studies illustrate the power of microrheological approaches to interfacial rheology.

Robert Leheny
Johns Hopkins University

Date submitted: 21 Nov 2008

Electronic form version 1.4