Visible Far-Field Superlens for Two-Dimensional Imaging Below the Diffraction Limit

EMILY RAY, RENE LOPEZ, University of North Carolina at Chapel Hill Department of Physics and Astronomy — Retaining the information carried by evanescent waves scattered from an object could allow for imaging features below the diffraction limit without time consuming scanning procedures. We show experimental results of sub-diffraction limited imaging with visible light using a metal and dielectric multilayer structure with a 2-D diffraction grating. The multilayer structure has an effective negative index of refraction that enhances evanescent waves. Interaction with the diffraction grating converts waves from evanescent into propagating, enabling collection with conventional optics. We are able to tune this far-field superlens (FSL) to our choice of operating wavelengths by modulating the thickness of the metal and dielectric layers. For a wavelength of 532 nm, we use Ag and Al₂O₃ layers with 20 nm thickness to image features with 150 nm size. This FSL functions with visible light to amplify evanescent waves and recreate images below the diffraction limit.