Towards two-dimensional superconductivity in La$_{2-x}$Sr$_x$CuO$_4$ in a moderate magnetic field

ALEXANDER SCHAFGANS, Department of Physics, University of California, San Diego

We report a novel aspect of the competition and coexistence between antiferromagnetism and superconductivity in the prototypical high-Tc cuprate La$_{2-x}$Sr$_x$CuO$_4$ (La214). With a modest magnetic field applied $H \parallel c$-axis, we monitored the infrared signature of pair tunneling between the CuO$_2$ planes and discovered the complete suppression of interlayer coupling in a series of La214 single crystals. We find that the in-plane superconducting properties remain largely intact, in spite of increased antiferromagnetism in the planes. Thus, our experiments show that an isolated CuO$_2$ plane is capable of maintaining high-Tc superconductivity. The theoretical framework for antiferromagnetic-driven interlayer decoupling is identified in the work of Berg, et. al. [E. Berg, et. al., Phys. Rev. Lett. 99, 127003 (2007) and Cond-mat arXiv:0810.1564].

1Work at UCSD is supported by the National Science Foundation (NSF-DMR-0705171)