Abstract Submitted for the MAR09 Meeting of The American Physical Society

Low Ordered Magnetic Moment in Fe-As High-T_c Superconductors by Violation of Hund's Rule¹ JOSE RODRIGUEZ, California State University at Los Angeles, EDWARD REZAYI, California State University at Los Angeles — We study by exact diagonalization the J_0 - J_1 - J_2 model over the square lattice that Si and Abrahams introduced recently to describe magnetism in the newly discovered iron-arsenic class of high- T_c superconductors. The case of maximum frustration between the nearest-neighbor and the next-nearest-neighbor Heisenberg exchange terms, $J_2 = |J_1|/2$, over a 4 by 4 square lattice with periodic boundary conditions is focused on. Each site hosts two Fe orbitals. Hidden long-range antiferromagnetic order can appear in the absence of Hund's rule coupling, $J_0 = 0$. It shows no net ordered magnetic moment. The ordered collinear/SDW moment steadily increases from zero as Hund's rule coupling turns on: J_0 < 0. This result compares well with recent determinations of a low ordered magnetic moment for the insulating parent compounds of Fe-As based high- T_c superconductors by elastic neutron scattering. Our numerical results are also consistent with a quantum phase transition at intermediate Hund's rule coupling, $J_0 = -2 |J_1|$, that separates the latter hidden-order state from a more familiar frustrated magnetic state that obeys Hund's rule.

¹Research supported in part by the Air Force Office of Scientific Research under grant no. FA9550-06-1-0479

Jose Rodriguez California State University at Los Angeles

Date submitted: 21 Nov 2008

Electronic form version 1.4