Electric-field control of a hydrogenic donor’s spin in a semiconductor1 AMRIT DE, CRAIG E. PRYOR, MICHAEL E. FLATTÉ, Department of Physics and Astronomy, University of Iowa — The orbital wave function of an electron bound to a single donor in a semiconductor can be modulated by an applied AC electric field, which affects the electron spin dynamics via the spin-orbit interaction. Numerical calculations of the spin dynamics of a single hydrogenic donor (Si) using a real-space multi-band $k \cdot p$ formalism show that in addition to breaking the high symmetry of the hydrogenic donor state, the g-tensor has a strong nonlinear dependence on the applied fields. By explicitly integrating the time dependent Schrödinger equation it is seen that Rabi oscillations can be obtained for electric fields modulated at sub-harmonics of the Larmor frequency. The Rabi frequencies obtained from sub-harmonic modulation depend on the magnitudes of the AC and DC components of the electric field. For a purely AC field, the highest Rabi frequency is obtained when E is driven at the 2nd sub-harmonic of the Larmor frequency. Apart from suggesting ways to measure g-tensor anisotropies and nonlinearities, these results also suggest the possibility of direct frequency domain measurements of Rabi frequencies.

1C.E.P. would like to acknowledge an NSF NIRT. M.E.F. would like to acknowledge an ONR MURI.

Michael Flatte
University of Iowa

Date submitted: 21 Nov 2008

Electronic form version 1.4