Magnetic-field induced isotropic to nematic liquid crystal phase transition

J.T. GLEESON, T.B. OSTAPENKO, Kent State University, D. B. WIANT, Wake Forest University, S.N. SPRUNT, A. JAKLI, Kent State University

We report on measurements of magnetic field induced nematic order in the bent-core liquid crystal 4-chlororesorcinol bis[4- (4-n-dodecyl oxybenzoxyloxy) benzoate]. Using the 31 Tesla solenoid at the National High Magnetic Field Laboratory, we have observed, at temperatures less than one degree above the clearing point, a first-order transition to the nematic phase. The critical magnetic field at which this occurs increases with temperature. We discuss these results within the context of both Maier-Saupe and Landau-deGennes mean field models for the nematic-isotropic transition. The implications of possible tetrahedratic order are also discussed. To our knowledge, this is the first observation of such a magnetic field-induced transition in a thermotropic liquid crystal; the reasons for which this behavior is now attainable are discussed.

This work was supported by the NSF (DMR-0606160) and Kent State University. Work performed at NHMFL supported by NSF cooperative agreement DMR-0084173, the State of Florida and the DOE.

J.T. Gleeson
Kent State University

Date submitted: 21 Nov 2008

Electronic form version 1.4