Behavior of a Josephson Flux Qubit on a Sapphire Substrate

ANTHONY PRZYBYSZ, E. CROWE, H. KWON, B.K. COOPER, R.M. LEWIS, University of Maryland, JQI, CNAM, B.S. PALMER, The Laboratory for Physical Science, JQI, J.R. ANDERSON, C.J. LOBB, F.C. WELLSTOOD, University of Maryland, JQI, CNAM — We discuss the design, fabrication, and testing of a Nakamura-style [1] flux qubit. The device consists of a four-Josephson junction qubit loop that is directly coupled to a small dc SQUID, which is used for detection. The device was built on a sapphire substrate using electron beam lithography and double angle evaporation to form the Al/AlOx/Al tunnel junctions. A 200 nm thick layer of aluminum was deposited on the e-beam resist in order to counteract charging effects during the lithography. Three of the junctions in the qubit loop were 100 nm x 250 nm, and the fourth was 100 nm x 150 nm. The large junctions are the main contribution to the inductance of the qubit loop, and the smaller junction creates an energy splitting of 1-10 GHz between the two circulating current states. The SQUID junctions were 100 nm x 2000 nm, and the critical current of the detection SQUID was 240 nA. We present the results of ongoing measurements on the behavior of the device at 25 mK. This project was funded by the JQI, LPS, and CNAM. [1] F. Yoshihara, Y. Nakamura, et al., “Decoherence of Flux Qubit Due to 1/f Flux Noise,” PRL 97, 167001 (2006).