Abstract Submitted for the MAR09 Meeting of The American Physical Society

Conductivity Dynamics in the Correlated Metallic State of V_2O_3 M. LIU, B. PARDO, Boston University, Dept. of Physics, M.M. QAZILBASH, UCSD, Dept. of Physics, S.J. YUN, B.G. CHAE, B.J. KIM, H.T. KIM, Electronics and Telecommunications Research Institute, Korea, D.N. BASOV, UCSD, Dept. of Physics, R.D. AVERITT, Boston University, Dept. of Physics — V_2O_3 is a strongly correlated electron material that undergoes a transition from antiferromagnetic insulator at low temperatures to a strongly correlated metal above ~140K. We report on time resolved spectroscopic studies of V_2O_3 thin films where we have observed coherent oscillations in the far-infrared conductivity following excitation with a 35-fs optical pulse. The resultant ~100 ps conductivity oscillations result from the optically induced generation of strain which modulates the orbital overlap and hence the conductivity thus revealing a strong coupling of carriers to the lattice in the metallic state. This contrasts with other vanadates such as VO₂ where this effect is not observed. We will discuss the potential of V_2O_3 as a candidate material for investigating photoinduced phase transitions.

> Richard Averitt Boston University

Date submitted: 15 Dec 2008

Electronic form version 1.4