Abstract Submitted for the MAR09 Meeting of The American Physical Society

Two DSC Glass Transitions in Miscible Blends of Polyisoprene / Poly(4-tert-butyl styrene) JUNSHU ZHAO, YE SUN, LIAN YU, MARK EDI-GER, University of Wisconsin-Madison — Conventional and temperature modulated differential scanning calorimetry experiments have been carried out on miscible blends of polyisoprene (PI) and poly(4-tert-butyl styrene) (P4tBS) over a broad composition range. This system is characterized by an extraordinarily large component T_q difference (~215 K) between the two homopolymers. Two distinct calorimetric T_{qs} were observed in blends with an intermediate composition range $(25\% \sim 50\%)$ PI) by both conventional and temperature modulated DSC. Good agreement was found between the T_q values measured by the two methods. Fitting of the measured T_{gs} to the Lodge-McLeish model gives a ϕ_{self} of 0.62~0.64 for PI in this blend and $0.02 \sim 0.05$ for P4tBS. The extracted ϕ_{self} for PI is comparable to reported values for PEO in blends with PMMA and is significantly larger than those reported for other PI blends with smaller component T_g differences. This observation suggests the presence of a confinement effect in PI/P4tBS blends, which results in enhanced fast component dynamics below the effective T_q of the slow component.

> Junshu Zhao University of Wisconsin-Madison

Date submitted: 21 Nov 2008

Electronic form version 1.4