Abstract Submitted
for the MAR09 Meeting of
The American Physical Society

Phase formation, Crystal Lattice and Microstructure Studies of sol-gel derived Pb(Ti,Fe)O$_3$1 SOMADITYA SEN, DAVID GELTING, SHISHIR RAY, YING ZOU, DONALD ROBERTSON, MARIJA GAJDARDZISKA-JOSIFOVSKA, LARRY BUROKER, MARK WILLIAMSEN, PRASENJIT GUPTASARMA2, Physics Dept., Univ. of Wisconsin, Milwaukee, 1900 E Kenwood Blvd. Milwaukee, WI 53211, USA — It has recently been suggested[1] that Fe-substituted PbTiO$_3$ can exhibit magnetoelectric multiferroic behavior. With an intent to examine whether Fe can fully substitute the lattice in Pb(Ti,Fe)O$_3$ and to study its effect on crystal structure, we have synthesized highly phase pure nanopowders from citric acid metal ion chelate complexes stabilized by glycerol in a sol gel. Using variety of probes, we demonstrate that Fe can substitute Ti up to at least 0.5 atoms per formula unit of Pb(Ti,Fe)O$_3$. Rietveld refinement of XRD data, from both laboratory and synchrotron sources, demonstrates that crystal structure of Fe substituted phases can be derived from the parent orthorhombic PbTiO$_3$ phase. Increasing concentration of Fe up to $x=0.3$ results in drastic change in lattice parameters and decrease in orthorhombic distortion. These results are supported by detailed studies of XRD, TEM and XAFS.

1NSF, RGI
2correspondence: pg@uwm.edu

Somaditya Sen
Physics Dept., Univ. of Wisconsin, Milwaukee,
1900 E Kenwood Blvd. Milwaukee, WI 53211, USA

Date submitted: 11 Dec 2008

Electronic form version 1.4