Abstract Submitted for the MAR09 Meeting of The American Physical Society

A Quantum Monte Carlo Study of Molecular Titanium Dihydride[†] TODD D. BEAUDET, JEONGNIM KIM, KENNETH ESLER, RICHARD M. MARTIN, University of Illinois at Urbana-Champaign — Recently there has been interest in the possibility of reversibly storing molecular hydrogen on titanium decorated carbon-nanostructures¹. As part of our research² in this area, we present DFT and QMC results for molecular TiH₂ using pseudopotentals. We identify the low energy symmetry-classified states and compare with previous work^{3,4}, where there is not a consensus on the symmetry and geometry of the ground state. At the DFT level, the TiH₂ d-states are nearly decoupled from the molecular geometry so that several d-state orderings are very close in energy. In our work we use diffusion Monte Carlo with the fixed-node approximation where the symmetry and nodal structure are determined by a trial function constructed of molecular orbitals from DFT. We will also discuss progress on Ti-carbon systems pertaining to hydrogen adsorption.

¹ E. Durgun *et al.*, Phys. Rev. Lett. **97**, 226102 (2006).

² T. D. Beaudet *et al.*, J. Chem. Phys. **129**, 164711 (2008).

³ J. A. Platts, J. Mol. Struct. **545**, 111 (2001).

⁴ B. Ma, C. L. Collins, H. F. Schaefer, J. Am. Chem. Soc. **118**, 870 (1996).

 † Supported by NSF DMR03-25939.

Todd D. Beaudet University of Illinois at Urbana-Champaign

Date submitted: 21 Nov 2008

Electronic form version 1.4