Abstract Submitted for the MAR09 Meeting of The American Physical Society

Magnetic frustration and spin glass behaviour in layered lithium oxide, $LiNi_{0.65}Co_{0.25}Mn_{0.10}O_2$. MAGNUS WIKBERG, PETER SVEDLINDH, Sciences, Uppsala University, MOHAMMED DAHBI, ISMAEL SAADOUNE, ECME, LP2E2M, FST Marrakech, University Cadi Ayyad, TOR-BJORN GUSTAFSSON, KRISTINA EDSTROM, Dep. of Materials Chemistry, Uppsala University — Samples of Li_xNi_{0.65}Co_{0.25}Mn_{0.10}O₂ with different amount of Li (x) have been investigated with ac and dc SQUID magnetometry, X-ray diffraction as well as with neutron scattering. The $\text{Li}_x \text{Ni}_{0.65} \text{Co}_{0.25} \text{Mn}_{0.10} \text{O}_2$ exhibit a rhombohedral structure (space-group $R\bar{3}m$) with non-magnetic Li⁺ layers alternating with transition metal (TM) slabs with edge-sharing oxygen octahedras. The nickel slabs contain several intralayer interactions of both antiferromagnetic (AFM), ferromagnetic (FM) type, e.g. 90° Ni²⁺-O-Mn⁴⁺ and 90° Ni³⁺-O-Ni³⁺, respectively. Also, the presence of Ni²⁺ in the Li-plane further induces AFM and FM couplings due to 180° superexchange interactions between Ni²⁺ in the Li-plane and TM- ions present in the slabs. The resulting magnetic structure shows no evidence of long range order due to a high degree of spin frustration, thus yielding magnetic properties reminiscent of a spin glass.

> Magnus Wikberg Dep. Eng. Sciences, Uppsala University

Date submitted: 21 Nov 2008 Electronic form version 1.4