Abstract Submitted for the MAR09 Meeting of The American Physical Society

Evolution of low-frequency resistance noise during annealing in CoFeB/MgO/CoFeB tunnel junctions¹ RYAN STEARRETT, WEIGANG WANG, LUBNA SHAH, EDMUND NOWAK, JOHN XIAO, University of Delaware — We have studied the evolution of tunneling magnetoresistance (TMR) and resistance noise in magnetic tunnel junctions (MTJs) as a function of annealing time at 425° C. Previously, we showed that short annealing times do lead to significant improvement in the MgO crystal structure and crystallization of the CoFeB electrodes, resulting in large TMR values up to 200%. We also observe that the low-frequency resistance noise decreases significantly after annealing for only a few minutes. The resistance noise has a 1/f spectrum and is quantified by a Hooge-like parameter, α , given in units of μm^2 . In unannealed samples α is of order 10^{-9} μm^2 and decreases with increasing voltage bias. Upon annealing, α drops to 10^{-10} μ m² and is less dependent on bias, particularly in the parallel configuration. We attribute the decrease in α and its bias dependence, $\alpha(V)$, to a reduction of defects in and around the barrier due to annealing. The implications for optimizing the signal to noise ratio of MgO-based MTJ sensors will also be discussed.

¹Department of Energy

Ryan Stearrett Department of Physics and Astronomy, University of Delaware

Date submitted: 21 Nov 2008

Electronic form version 1.4