Abstract Submitted for the MAR09 Meeting of The American Physical Society

Upper Critical Field and Phase Diagram Studies for λ -(BETS)₂GaCl₄¹ LAUREL E. WINTER, WILLIAM A. CONIGLIO, KYUIL CHO, BRAUNEN E. SMITH, C.C. AGOSTA, Clark University, L.K. MONT-GOMERY, Indiana University — The upper critical fields for the highly anisotropic organic superconductor λ -(BETS)₂GaCl₄ have been studied by measuring the inplane RF penetration depth with a tunnel diode oscillator technique in pulsed fields. At zero field we found a T_c of 5 K. With the field perpendicular to the conducting layers we extrapolate $H_{c2,T=0}$ to 2.8 T and with the field parallel $H_{c2,T=0}$ is 11 T. With the field applied parallel to the conducting layers, for $T > 0.5T_c$ the H_{c2} follows the superconducting gap function $\sqrt{1 - \frac{T}{T_c}}$, then saturates below $0.5T_c$. Below $0.35T_c$ we see a clear enhancement of 1.5 T in H_{c2} and in addition there is a second phase line at a lower field than H_{c2} . These features are both characteristic of the FFLO state. We will discuss this second phase line in relation to the Pauli Limit as calculated in a semi-empirical method and compare our phase diagram to previous results.

¹We acknowledge DOE support from DE-FG02-05ER46214.

Laurel E. Winter Clark University

Date submitted: 28 Nov 2008

Electronic form version 1.4