Abstract for an Invited Paper for the MAR09 Meeting of the American Physical Society

ARPES Clues to the Hidden Order in URu$_2$Si$_2$

JONATHAN DENLINGER2, Lawrence Berkeley National Laboratory

The three-dimensional electronic structure of UHV-cleaved URu$_2$Si$_2$ is investigated using photon-dependent angle-resolved photoemission (ARPES). Wide angle Fermi-surface (FS) maps as well as high-resolution spectroscopy focused on key high symmetry points reveal high U 5f spectral weight at the hole-like regions of the Γ and Z-points. The small hole-surface FS topologies have good size correspondence to dHvA FS orbit frequencies, but do not agree well with LDA band structure calculations. More favorable correspondence of the URu$_2$Si$_2$ ARPES is made to LDA+DMFT calculations as well as to detailed ARPES measurements of 5f^0 ThRu$_2$Si$_2$. Special attention was given to spatial-dependent characterization of the cleave surface in order to understand the possible cleave terminations and to avoid surface effects related to disorder or non-bulk coordinated U-termination. Theoretical surface slab calculations assist in identifying surface-termination related features at the X-point. In addition, we propose a model for the incommensurate nesting vectors, 0.6a^* and 1.4a^*, observed by inelastic neutron scattering3 to be characteristic of the hidden order phase of URu$_2$Si$_2$. Finally, preliminary ARPES results for URu$_{2-x}$Re$_x$Si$_2$ give a clue as to the mechanism by which Re doping suppresses the hidden order phase in favor of ferromagnetism.

1Supported by the U.S. DOE at the Advanced Light Source (DE-AC02-05CH1231), at UM (DE-FG02-07ER46379) and UCSD (FG02-04ER46105 & FG02-04ER46178), and by the NSF at UCSD (DMR08-02478).
