Abstract Submitted for the MAR09 Meeting of The American Physical Society

Exciton Dynamics in (6,5) carbon nanotubes ANDY WALSH, JUDE SCHNECK, Boston University, ALEX GREEN, MARK HERSAM, Northwestern University, SIDNEY REDNER, LAWRENCE ZIEGLER, ANNA SWAN, Boston University — Single color (E22) pump-probe data on a solution of (6,5) nanotubes reveal that use of pulses shorter than the dephasing time scale precludes the formation of multiple excitons on a single nanotube. Subsequent relaxation dynamics of the single exciton exhibits stretched exponential behavior, and data from low to saturation fluence, and over 3 order of magnitude of time delay, is described by the same model. The stretched exponential model with its implication of a distribution of decay rates is attributed to a distribution of length-dependent effective lifetimes due to end-quenching via diffusion. Results give values for the dipole moment, E22 dephasing time and E11 diffusion coefficient.

Anna Swan Boston University

Date submitted: 16 Dec 2008

Electronic form version 1.4