MAR09-2008-007030

Abstract for an Invited Paper for the MAR09 Meeting of the American Physical Society

Measuring the configurational temperature of granular media MATTHIAS SCHRÖTER, Max Planck Institute for Dynamics and Self-Organization

Twenty years ago Edwards and Oakeshott suggested developing a statistical mechanics of static granular media based on the idea that the logarithm of the number of mechanically stable states of a specific sample constitutes the relevant entropy [1]. From this entropy then, a configurational temperature, named compactivity, could be derived. However, in the absence of an appropriate thermometer to measure compactivity, the question if it is indeed a relevant state variable remained untested. Only recently it was shown that the steady state volume fluctuations of a periodically driven sample can be used to measure the compactivity of a granular sample including its dependence on volume fraction and surface friction of the particles [2]. This opens up the possibility of studying questions like the existence of a zeroth law of granular thermodynamics or the relationship between compactivity and other forms of granular temperature.

[1] Edwards and Oakeshott, Physica A **157**, 1080 (1989).

[2] M. Schröter, D. Goldman, and H. L. Swinney Phys. Rev. E 71, 030301(R) (2005)