Abstract for an Invited Paper for the MAR09 Meeting of The American Physical Society

Graphene field-effect transistors for RF applicatoins¹ KENNETH SHEPARD, Columbia University

There has been growing interest in graphene as a replacement for III-V materials in MMIC applications because of its high mobility, its potential for high saturation velocity, and its nearly perfect two-dimensional electrostatics. We present results from the first experimental high-frequency measurements of graphene field-effect transistors (GFETs), demonstrating an f_T of 14.7 GHz for a 0.5- μ m-length device with a 30-nm-thick HfO₂ top-gate. Despite I_{on}/I_{off} ~7, high transconductances (>833 μ S/ μ m) and current saturation are achieved. We present detailed measurement and analysis of velocity saturation in GFETs, demonstrating the potential for velocities approaching 10^8 cm/sec and the effect of an ambipolar channel on current-voltage characteristics. We find that the saturation velocity is sheet-carrier dependent and limited by interfacial phonon scattering from the SiO₂ substrate upon which the graphene is fabricated.

¹This work was supported by the C2S2 Center of the Focus Center Research Program.