Abstract Submitted for the MAR09 Meeting of The American Physical Society

Supersymmetry in strongly correlated fermion models DIMITRIS GALANAKIS, University of Illinois at Urbana - Champaign, STEFANOS PAPANI-COLAOU, CHRIS HENLEY, Cornell University — We investigate the Fendley and Schoutens ¹ model of hard core fermions on lattice which have hopping elements t, and potential terms V which include a second-neighbor repulsion with some multiparticle terms. At the special point t = V, they showed that the Hamiltonian is $H = \{Q^{\dagger}(r), Q\}$ with $Q = \sum_{r} q(r) = \sum_{r} c(r) P(r)$, where c(r) is an annihilation operator and P(r) enforces the hardcore. That means the system acquires an exact non-relativistic supersymmetry, and for a range of fillings has a large number of zero-energy ground states ¹. To obtain insights on the nature of the zero-energy states and excitations, we perform exact diagonalization studies on finite clusters for various interaction strengths, fillings and lattice geometries. We note that for fillings beyond $n \approx 0.3$, we find coexisting domains of the inert crystal at n = 1/2, in contrast to a related non-supersymmetric model² Moreover, using both numerical and analytical tools, we investigate perturbative limits where q(r) is changed so as to preserve supersymmetry but a particular class of ground-states becomes trivial.

¹P. Fendley and K. Schoutens, Phys. Rev. Lett. 90, 120402 (2003). ²N.G. Zhang and C.L. Henley, Phys. Rev. B 68, 014506 (2003).

> Dimitrios Galanakis Louisiana State University

Date submitted: 29 Nov 2008

Electronic form version 1.4