Phonon and magnetic excitations in the novel BaFe$_{1.8}$Co$_{0.2}$As$_2$ superconductor

DAN PARSHALL, Univ of Tennessee, Dept of Physics, KONSTANTIN LOKSHIN, Univ of Tennessee, Dept of Materials Science, MATTHEW STONE, DOUGLAS ABERNATHY, MARK LUMSDEN, ANDREW CHRISTIANSON, DAVID MANDRUS, ATHENA SAFASEFAT, ORNL, TAKESHI EGAMI1, ORNL; Univ of Tennessee, Depts of Physics and Materials Science — Phonon and magnetic excitations in the BaFe$_{1.8}$Co$_{0.2}$As$_2$ superconductor single crystal were studied by inelastic neutron scattering using the ARCS time-of-flight spectrometer at the Spallation Neutron Source. Most of the phonon branches show a good agreement with the density functional theory calculations. However, the As-Raman vibrations along the c-axis demonstrate strong softening contrary to the flat behavior expected from the LDA calculations. The softening is strongest along the (0.5, 0.5, L) direction, by up to 4 meV. At the same time a sharp magnetic response was found along the same (0.5, 0.5, L) direction over a wide range of L-values at energy transfer of 10-25 meV. This dynamic magnetic responds indicates on a 2-D character of antiferromagnetic spin fluctuations in the superconducting phase, in strong contrast to the 3-D static antiferromagnetism in the undoped non-superconducting BaFe$_2$As$_2$. Thus, in Fe-As based superconductors magnetism shows strong sensitivity to the lattice, suggesting a possibility of spin-phonon coupling playing a role in superconductivity.

1corresponding author

Dan Parshall
Univ of Tennessee, Dept of Physics

Date submitted: 21 Nov 2008