Abstract Submitted for the MAR09 Meeting of The American Physical Society

Magnetic and structural phase transitions in epitaxial thin films of Manganites¹ VALERIA LAUTER, HAILEMARIAM AMBAYE, STEVEN NA-GLER, HANS CHRISTEN, MIKE BIEGALSKI, Oak Ridge National Laboratory, SNS COLLABORATION, CNMS COLLABORATION — Understanding the magnetic properties of complex materials near interfaces is important for the development of functional nanostructures and devices. Epitaxial LaMnO₃ films were grown on $SrTiO_3$ substrates. Recent work on such thin-film samples has shown that "interface doping" can induce magnetism at interfaces. Our work on LaMnO₃/SrTiO₃ interfaces has shown that the nature of the interface determines its magnetic structure - with the MnO_2 -SrO interface showing a different magnetization than the LaO-TiO₂ interface. To investigate interfacial structures, we used polarized neutron reflectometry with off-specular scattering. Our results give evidence of reversible temperature- and field- dependent structural changes in LaMnO₃ film which undergo a phase transition. We determined that a structural phase transition in $SrTiO_3$ and the misfit strain trigger appearance of twins to reduce stresses and to adjust lattice mismatch between the film and the substrate. We show that a laterally correlated superstructure appear due to interaction of structural modifications with the magnetization the film

¹This Research at Oak Ridge National Laboratory's Spallation Neutron Source U. S. Department of Energy.

> Valeria Lauter Oak Ridge National Laboratory

Date submitted: 29 Nov 2008

Electronic form version 1.4