MAR09-2008-007556

Abstract for an Invited Paper for the MAR09 Meeting of the American Physical Society

Quantum fluid dynamics and superfluid behaviour of polaritons in microcavities

DANIELE SANVITTO, Universidad Autonoma Madrid

Achievement of polariton condensation in semiconductor microcavities [1,2] has opened the way to the study of new interesting phenomena related to the behaviour of non-equilibrium Bose particles in the quantum limit. In this talk we will see the formation of a coherent quantum state of polaritons created at a given momentum and at a given time using a combination of a continuous wave pump and a pulsed probe. This state is observed to persist in the cavity for a time much longer than the cavity lifetime [3]. Using this technique we are able to investigate the behaviour of a quantum state of polaritons with an extension of ~ 20 μ m moving a hundreds of microns within the cavity. One of the most striking effects of a moving polariton condensate is the observation of superfluid behaviour when crossing obstacles even at speeds only 100 times smaller than the speed of light [4]. Other interesting phenomena, which will be shown, are diffusion-less motion, due to the linearization of the polariton dispersion, and the formation of Cherenkov-like patterns for polaritons moving at supersonic velocities.

[1] J. Kasprzak et al. Nature 443, 409 (2006).

[2] R. Balili et al. *Science* **316**, 1007 (2007).

[3] D. Ballarini et al. http://arxiv.org/abs/0807.3224 (arXiv:0807.3224) (2008).

[4] A. Amo et al. *Nature*, forthcoming publication (2009).