Abstract Submitted for the MAR09 Meeting of The American Physical Society

Thermoelectric properties of Yb₁₄**MnSb**₁₁ from first-principles¹ J.-H. SONG, Northwestern U., M. KIM, Ajou U., A.J. FREEMAN, Northwestern U. — The complex Zintl compound, Yb₁₄MnSb₁₁, has been recently given much attention as a high-performance thermoelectric due to its nearly twice the figure of metrit (zT) of p-type SiGe at high temperatures (> 900K)². Its high zT can be attributed to low lattice thermal conductivity combined with a large Seebeck coefficient (S) and high electrical conductivity (σ) at high temperatures. To understand the thermoelectric properties of Yb₁₄MnSb₁₁ and to find possible improvements for thermoelectric performance, we have investigated its electronic structures and electrical transport properties (S, σ) using the highly precise FLAPW method³ with the local spin density approximation (LSDA) and LSDA+U⁴ methods. We have found significantly different spin moments of Mn between the LSDA and the LSDA+U methods. Also, we determined the anisotropy of the conductivity. The linear temperature behavior of the Seebeck coefficients will be discussed from and related to the electronic structures.

¹Supported by NSF (through its MRSEC program at N.U.) and KRF (KRF-2008-313-C00218).

²S. R. Brown et al., Chem. Mater. 18, 1873 (2006)
³Wimmer, Krakauer, Weinert, Freeman, Phys. Rev. B 24, 864 (1981)
⁴Shick et al, Phys. Rev. B 60, 10763, (1999)

Jung-Hwan Song Northwestern University

Date submitted: 29 Nov 2008

Electronic form version 1.4