Thermoelectric properties of Yb$_{14}$MnSb$_{11}$ from first-principles1

J.-H. SONG, Northwestern U., M. KIM, Ajou U., A.J. FREEMAN, Northwestern U. — The complex Zintl compound, Yb$_{14}$MnSb$_{11}$, has been recently given much attention as a high-performance thermoelectric due to its nearly twice the figure of merit (zT) of p-type SiGe at high temperatures (> 900K)2. Its high zT can be attributed to low lattice thermal conductivity combined with a large Seebeck coefficient (S) and high electrical conductivity (σ) at high temperatures. To understand the thermoelectric properties of Yb$_{14}$MnSb$_{11}$ and to find possible improvements for thermoelectric performance, we have investigated its electronic structures and electrical transport properties (S, σ) using the highly precise FLAPW method3 with the local spin density approximation (LSDA) and LSDA+U4 methods. We have found significantly different spin moments of Mn between the LSDA and the LSDA+U methods. Also, we determined the anisotropy of the conductivity. The linear temperature behavior of the Seebeck coefficients will be discussed from and related to the electronic structures.

1Supported by NSF (through its MRSEC program at N.U.) and KRF (KRF-2008-313-C00218).

