MAR09-2008-007721

Abstract for an Invited Paper for the MAR09 Meeting of the American Physical Society

Experimental observation of the quantum spin Hall state in HgTe quantum wells LAURENS MOLENKAMP, Würzburg University

Spin-orbit interaction in semiconductors causes many interesting and potentially useful transport effects, such as e.g. the presently very topical spin-Hall effect[1]. So far no direct evidence for a ballistic, intrinsic SHE (i.e. resulting from the band structure) has been obtained by transport experiments. Here, we demonstrate that in specially designed nanostructures[2], which are based on narrow gap HgTe type-III quantum wells, a detection of the spin signal is possible via non-local voltage measurements. Recently, it was pointed out that such HgTe quantum wells, that exhibit an inverted band structure where the ordering of electron- and hole-like states is interchanged, are topologically non-trivial insulators[3], in which the quantum spin Hall insulator state[4] should occur. In this novel quantum state of matter, a pair of spin polarized helical edge channels develops when the bulk of the material is insulating, leading to a quantized conductance. I will present transport data provide very direct evidence for the existence of this third quantum Hall effect: when the bulk of the material is insulating, we observe a quantized electric conductance[5]. Finally, we demonstrate how a combination of the techniques used in the above experiments allows us to verify that the transport in the quantum spin Hall insulator state indeed occurs through spin-polarized helical edge channels.

[1] S. Murakami et al., Science 301 (2003) 1348; J. Sinova et al., Phys. Rev. Lett. 92 (2004) 126603; Y. Kato et al., Science 306 (2004) 1910.

- [2] E.M. Hankiewicz, et al., Phys. Rev. B 70 (2004) 241301(R).
- [3] B.A. Bernevig et al., Science 314 (2006) 1757.
- [4] C.L. Kane and E.J. Mele, Phys. Rev. Lett. 95 (2005) 146802.
- [5] M. König et al., Science 318, 766 (2007).