Self-Assembled Superparamagnetic Binary Nanoparticle Superlattices

J. CHEN, Dept Mat Sci & Engn, Univ Penn, X. YE, Dept Chem, Univ Penn, Y. ZHANG, Dept Mat Sci & Engn, Univ Penn, J.M. KIKKAWA, Dept Phys & Astron, Univ Penn, C.B. MURRAY, Dept Mat Sci & Engn, Dept Chem, Univ Penn — We report binary nanoparticle superlattices (BNSLs) composed of two different types of superparamagnetic nanoparticles (NPs). Since the magnetic properties of these NPs depend both on size and composition, two strategies are used to form BNSLs. First, we use different sizes of the same material (e.g.-10.5 nm and 5.6 nm diameter Fe₃O₄ NPs). Second, we use different materials, such as 14.2 nm Fe₃O₄ NPs and 6 nm FePt NPs, or 14.2 nm Fe₃O₄ NPs and 7.1 nm CoPt₃ NPs. We observe the formation of large scale BNSLs (up to several µm) due to the high uniformity of these nanoparticles. Using a serial tilting capability of our TEM tomography holder we confirm that the BNSLs are icosohedral NaZn₁₃ and AlB₂ type structures, which are thermodynamically stable due to their high packing density. We further measured the magnetic properties of these BNSLs samples, and single component samples, by SQUID magnetometry. Dipolar and/or exchange coupling between two components is studied.

Supported by NSF MRSEC DMR-0520020 and ARO/MURI W911NF-08-1-0364.

J. Chen
Dept Mat Sci & Engn, Univ Penn

Date submitted: 29 Nov 2008

Electronic form version 1.4