De Haas-Van Alphen Experiments on BaNi$_2$P$_2$

TAICHI TERASHIMA, MOTOI KIMATA, HIDETAKA SATSUKAWA, ATSUSHI HARADA, KAORI HAZAMA, MOTOHARU IMAI, SHINYA UJI, National Institute for Materials Science, Japan, HIJIRI KITO, AKIRA IYO, HIROSHI EISAKI, National Institute of Advanced Industrial Science and Technology (AIST), Japan, HISATOMO HARIMA, Kobe University, Japan — We have observed de Haas-van Alphen (dHvA) oscillations in BaNi$_2$P$_2$, which is isostructural with BaFe$_2$As$_2$ and becomes superconducting below $T_c = 3$ K without doping [T. Mine et al., Solid State Commun. 147, 111 (2008)]. It is a suitable compound to study how different electronic structures are between iron and nickel-based superconductors. The single crystals used in the study were obtained by high-pressure synthesis. dHvA frequencies up to 8 kT were observed, and their sizes and angular dependences can be explained very well by a band-structure calculation. Effective masses are two to three times larger than the corresponding band masses, suggesting moderate mass enhancement due to electron-phonon and electron-electron interactions.

Taichi Terashima
National Institute for Materials Science

Date submitted: 29 Nov 2008