Superconductivity in \((La_{1-x}Th_x)PtSi\) and \(LaPt_{1-x}Si\) systems\(^1\)

W.H. LEE, H.H. SUNG, J.Y. CHEN, K.J. SYU, National Chung Cheng University — As revealed in the powder x-ray diffraction and crystallographic data, the partial substitution of La with Th in \((La_{1-x}Th_x)PtSi\) is able to be systematic up to the solubility limit near \(x = 0.5\) and the parent compound \(LaPtSi\) admits considerable vacancies up to 20% on the Pt sublattice while still retaining its tetragonal symmetry. The refined lattice parameters show that both the c-axis and the volume of the unit cell \(v\) shrink clearly due to the doping with Th or the existence of vacancies in the compound. These results are consistent with what one would expect from a chemical pressure effect. We will present the static magnetization and specific heat data for these pseudo-ternary compounds investigated in the necessary temperature range. Discussion of the change in the superconducting critical temperature \(T_c\) will be directed toward the changes of electron number density as well as the lattice parameters with respect to pure \(LaPtSi\).

\(^1\)Supported by the National Science Council of R.O.C. under grant no. NSC 96-2112-M-194-008-MY3.