Undulatory swimming of a sandfish lizard in granular media

DANIEL GOLDMAN, RYAN MALADEN, CHEN LI, YANG DING, Georgia Tech

— We study the locomotion of the desert dwelling sandfish lizard (Scincus scincus) as it dives into and swims beneath the surface of sand (300μm glass beads). Above the surface, the animal uses a diagonal gait to move rapidly across the sand. High speed x-ray imaging reveals that once subsurface the animal no longer uses limbs for propulsion but instead folds the limbs against the body and generates thrust using a large amplitude undulatory motion consisting of a traveling wave with frequency f that propagates down the body with one wave period. The forward swimming speed v (maximum 10 cm/sec) increases with increasing f. We measure v versus f as a function of packing fraction of the material ϕ. To predict v as a function of f and ϕ, we model the animal as a series of elements, each which produces thrust and experiences drag along its surface. We measure thrust and drag coefficients by performing drag measurements on a small stainless steel rod (grain-rod friction comparable to the animal’s skin) as a function of rod angle, rod speed, and ϕ. Integrating the drag law over a sinusoidal wave form accurately predicts the $v - f$ relationship of the animal in loose and close packed granular media.

1work supported by the NSF Physics of Living Systems

Daniel Goldman
Georgia Tech

Date submitted: 29 Dec 2008

Electronic form version 1.4