Functionalizing a nanopore with nano-electrodes for control of the translocation of DNA with single base resolution1 HONGBO PENG, STANISLAV POLONSKY, GUSTAVO STOLOVITZKY, STEPHEN ROSSNAGEL, Thomas J. Watson Research Center — Recently, application of nanopores to low-cost DNA sequencing has attracted great interest as there is great need to reduce the cost of sequencing a whole human genome to $1000. A key issue in the field of nanopore DNA sequencing is to control the DNA translocation. Here we will report the development of what we call a DNA transistor: a nanopore-based electrical device for controlling the translocation of DNA with single base resolution. The key part of this device is a free standing membrane, within which multiple layers of electrically addressable metal electrodes separated by dielectric layers are embedded. A 1-5 nanometer size pore is made through the membrane. We demonstrated that such a device is electrically viable for the electrode layer or the spacing dielectric layer as thin as 3 nm. Confirming the basic function of the device, induced electrical signals on the nano-electrodes by the translocating DNA, as well as the modulation of DNA translocation speed by the voltage bias applied on the nano-electrodes are also observed. Our ongoing experiments test if the modulated electrical field can trap or translocate DNA at a single base resolution.

1This work is supported by NHGRI under grant number R01HG005110.

Hongbo Peng
Thomas J. Watson Research Center

Date submitted: 15 Oct 2009

Electronic form version 1.4