Size effect and sp3 bond formation in carbon nanotube bending1

CHUN TANG, Department of Physics & High Pressure Science and Engineering Center, University of Nevada, Las Vegas, WANLIN GUO, Institute of Nano Science, Nanjing Univ. Aero & Astro., CHANGFENG CHEN, Department of Physics and High Pressure Science and Engineering Center, University of Nevada Las Vegas — We report molecular dynamics simulations of bending behaviors of carbon nanotubes (CNTs). Due to the interlayer interaction, single-walled CNTs (SWCNTs) and multi-walled CNT (MWCNTs) show different buckling characters both in deformation pattern and energetic evolution. Simulations in post-buckling region show that large bending strain leads to sp3 bond formation in kink areas and that the capability of sp3 bond formation is sensitive to tube size. These results suggest a new route for structure engineering of CNTs.

1Work supported by DOE Cooperative Agreement No. DE-FC52-06NA26274.