MAR10-2009-000212

Abstract for an Invited Paper for the MAR10 Meeting of the American Physical Society

Direct imaging of structural domains in iron pnictides

MAKARIY TANATAR, Ames Laboratory

The parent compounds of iron-arsenide superconductors undergo first order structural transition between tetragonal and orthorhombic phases at a temperature, T_S . In $A\mathrm{Fe_2As_2}$ (122) compounds ($A=\mathrm{Ca,Sr,Ba}$) this occurs simultaneously with magnetic transition at T_M . Using a combination of polarized light microscopy and spatially-resolved high-energy synchrotron x-ray diffraction we show the orthorhombic distortion leads to the formation of 45° -type structural domains in both 122 and 1111 single crystals. Domains penetrate through the sample thickness in the c-direction and are not affected by crystal imperfections such as growth terraces. The domains form regular stripe patterns in the plane with a characteristic dimension of 10-50 μm . In a range of low Co-doped compositions structural domains and superconductivity coexist. With the increasing doping level the domain structure becomes more intertwined and fine due to a decrease in the orthorhombic distortion. This results in an energy landscape with maze-like spatial modulations favorable for pinning and intrinsically high critical current densities in the underdoped regime. M.A.Tanatar et al. Phys. Rev. B 79, 180508 (R) (2009). R. Prozorov et al. arxiv: 0909.0923, Phys. Rev.B accepted.