Abstract Submitted for the MAR10 Meeting of The American Physical Society

Structural and magnetic properties of $Tc_n@C_{60}$ endohedral metallofullerenes: An ab initio study¹ EUNJA KIM, PHILIPPE F. WECK, KENNETH R. CZERWINSKI, University of Nevada Las Vegas, DAVID TOMÁNEK, Michigan State University — We use ab initio spin density functional calculations to study the equilibrium structure and magnetic properties of $Tc_n@C_{60}$ endohedral metallofullerenes. The radionuclide ^{99m}Tc is well established in biomedicine as a potent in vivo diagnostic radiopharmaceutical; its encapsulation in the inert C_{60} shell is expected to limit possible cytotoxicity of radiometal nanoparticles catabolized by the biological host. We find that C_{60} can endohedrally accommodate Tc_n clusters with up to n=7. The encapsulation does not change significantly the structure of the enclosed clusters, but reduces the magnetic moment due to a stronger Tc-C hybridization for the larger clusters.

¹EK, PFW, and KRC were supported by the U.S. DOE agreement DE-FG52-06NA26399; DT was supported by the NSF NSEC grant EEC-425826.

Philippe F. Weck UNLV

Date submitted: 04 Nov 2009 Electronic form version 1.4